

DPSIR, Indicators and Forest Ecosystem Services

Tim Barnard and Tim Payn

Context

• The role of ecosystem service indicators in shaping and informing policy is becoming a major area of interest and debate.

A role for the Montréal Process?

- The Montréal Process may be well placed to contribute to this discussion.
- Increase the uptake and impact of the existing C&I framework through a deepening understanding of forest ecosystem services and use of DPSIR approaches.
- Intent of the Montréal Process ...

Ecosystem services and system dynamics

- The attractiveness of the concept lies in the use of systems dynamics to describe complex forest ecosystem functions and processes and their linkages to human wellbeing
- The concept of forest ecosystem goods and services has become widely embraced by forest policy makers, forest managers and the wider forest research community.
- How do we make sense of it...?
- How do we tell compelling stories...??

Millennium Ecosystem Service Assessment

Montréal Process indicators and the MEA

- Strong link between MEA and MP-C&I
- The DPSIR approach is increasingly being used to rationalise the complex interactions present in 'causal' relationships associated with change in forest ecosystems generated by human activity.

Making sense of MEA in decision-making

- Highly complex and explorative.
- Emergence of ecosystem cascades ...

DPSIR and ecosystem service cascades

Müller, F., Burkhard, B., 2012. The indicator side of ecosystem services. Ecosystem Services 1, 26-30.

Using indicators in DPSIR approaches

- Indicators may be used at all stages of the DPSIR approach. Their value being directly related to:
- The indicator being a true measure of the 'object of interest';
- Robust ecosystem service based rationales to support indicator selection;
- The availability of data;
- An awareness of uncertainties and the reliability of indicators;
- Optimal use of groups of related indicators and data; and,
- The ability to link indicators in meaningful causal relationships

Müller, F., Burkhard, B., 2012. The indicator side of ecosystem services. Ecosystem Services 1, 26-30.

Indicators in supply and demand relationships

(Slootweg et al. 2001)

Soil property degradation or

(Scion 2012 - Figure adapted from Slootweg et al., 2001).

Indicators in shaping and evaluating interventions

(Slootweg et al. 2001)

... of effects and impacts

• All environmental impacts are ultimately social impacts

Mapping flow-on effects

Biophysical changes	Impact/issue	Effect/outcome	Social/economic/cultur al changes	Human impacts	Flow-on impacts
Loss of physical support functions for natural forest flora & fauna (landslide etc.). Depletion and ecosystem performance	Ecosystem degradation or destruction (C1,3,4)	Loss of habitat (C1.1, 1.2, 1.3a) Reduced forest area & forest production (C6.1) Changes in supply of key flora and fauna (C1.2,6.3)	Reduced availability/accessibility of wild foods (C6.3) Reduced availability of forest materials/fibres etc. & chemicals (C6.3) Loss of natural pharmaceuticals /medicines (C6.3, 6.5) Loss of biodiversity (C1.1, 1.2) Loss of recreational opportunity (e.g. hunting, walking, relaxing) (C,6.3, 6.4)	Nutrition/ health effects (C6.5) Loss of cultural practises and associated knowledge (6.5) Reduced independence /self-reliance (C6.3) Changes in livelihoods strategies (6.3)	Reduced individual and collective health & wellbeing (C6.5) Reduced quality of living environment/amenity, and sense of place (C6.5, 6.3) Reduction in cultural integrity & identity (C6.5) Psychological and spiritual stress/loss (6.5). Loss of local and regional cultural diversity (6.5).

Questions for discussion

- What are the benefits of an ecosystem service/DPSIR approach to the Montréal Process (and to soil and water reporting?)
- How may the existing Montréal Process C&I framework be used within a forest ecosystem service/DPSIR approach?
- The need for worked examples??

